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Kennett (1963) calculated the hypersonic flow fields past the lower (compression) 
surface of a delta wing, using the one-strip approximation of the method of 
integral relations. He obtained solutions only for wings with detached shocks. 
In  this paper, his solutions are extended to wings with attached shocks. Here, 
the sonic point is inboard of the leading edge which makes the problem mixed. 
The solutions compare very well with the numerical solutions of the full equa- 
tions by Babaev (1 963 a )  both in the shock shapes and pressure distributions for 
various Mach numbers. 

1. Introduction 
When hypersonic flow takes place past the lower surface of a delta wing, a 

shock wave is formed upstream of the lower surface. This shock may be attached 
or detached from the leading edges of the wing, depending on the Mach number, 
angle of attack and sweepback angle of the wing. 

The flow for the detached-shock case has been calculated by a number of 
workers but for some applications, as Kuchemann (1964) has remarked, it is 
the attached-shock case that is more important since it is the one that is relevant 
to the design of proposed commercial hypersonic aircraft. It is the attached 
shock case that we shall be concerned with in this paper. 

In the early fifties, Maslen (1952) and Powell (1956) used the linearization 
method to obtain some calculations. Their methods are inapplicable for flows 
with shock waves of more than negligible strength when linearization breaks 
down for perturbations are then no longer small. 

Two approaches have been made to date to the problem of calculating the 
flow past a delta wing with attached-shock wave of arbitrary strength. The first 
and more important, since it sets a standard which will be aimed at in the calcula- 
tions which follow was by the Russian worker Babaev (1963a, b ) ,  who in two 
papers described and gave the results of calculations for delta wings a t  Mach 
numbers 4, 6 and (effectively) infinity. He replaced the original set of partial 
differential equations by their finite difference equivalents. After assuming some 
shape of the shock wave, he used the steepest descent method to solve the finite 
difference equations. He found a more precise shape of the shock and with this 
he solved the system of equations again and refined the shock shape still further. 
The process was continued until the last two shock shapes were identical. The 
published account of his work suggests that the method required considerable 
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development and computer time, and notwithstanding its success has not been 
taken up since. 

The second approach has been made by Squire (1967) and B. A. Woods (private 
communication) on the basis of a thin shock layer approximation introduced by 
Messiter (1963). Their work is thus restricted to hypersonic flow only. Squire’s 
results entail a further approximation in obtaining a smooth solution to Messiter’s 
equations. To satisfy the boundary conditions he is forced to relax the flow 
tangency condition on part of the wing surface, so that his calculations in effect 
are for a delta wing which is slightly non-planar over some of its span. 

Woods’s solutions satisfy the boundary conditions exactly but contain dis- 
continuities. Clearly the thin shock-layer approximation leads to the introduction 
of spurious features in the flow. Neither workers’ results are better than fair 
as regards pressure distribution and overall force, so that this approximation has 
limitations both in principle and in practice. 

The detached shock case has been dealt with by a number of people. Messiter 
(1963) and Hida (1965) based their calculations on Newtonian assumptions and 
thin shock-layer approximation. Squire has also improved on their work. 
Kennet (1963) used the method of integral relations to obtain his solutions. After 
reducing the governing partial differential equations to ordinary differential 
equations, and replacing one of the momentum equations by an equation ex- 
pressing the constancy of entropy on the wing surface, he started his integration 
from the centreline outwards with a value of the shock distance which he obtained 
by requiring that the sonic singular point occurred at the leading edge. 

For an attached shock case, we shall follow Kennet in the derivation of the 
equations of motion and the reduction to ordinary differential equations. But, 
instead of starting the numerical integration from the centreline, we shall start 
from the sonic singular point. 

It is of interest to remark here that Brook (1965) attempted the attached shock 
case using precisely the same equations as Kennet, and integrating from the 
centreline outwards. He was, however, unable to obtain a solution which matched 
the uniform solution at the Mach-cone singular point and therefore he concluded 
that the extension of the method of integral relations with one strip approxima- 
tion to the mixed cross-flow problem leads t o  an indeterminate solution. We 
shall see later on that the problem is indeed determinate. 

We now analyse the problem. The flow is conical with centre of conicity at  the 
apex ofthe wing. We shall consider only the one-strip approximation of the method 
of integral relations, assuming that the flow fields vary across the shock layer 
according to an assumed law. 

The flow is uniform in the region between the leading edge and the sonic 
point (ADB in figure 1). This region is bounded by the Mach cone BD, the plane 
shock BA and the wing surface AD. 

The flow is non-uniform in the centre region of the wing. At the point B, is 
the point of intersection of the Mach cone BD and the shock wave as the latter 
begins to curve. Between the point B and the plane of symmetry of the wing, the 
shape of the shock wave is unknown and must be determined from the system of 
equations. 
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At the leading edge A ,  the shock distance is zero. Here a cubic is solved to give 
the shock slope, and with this known, the other flow fields are determined. The 
sonic point D is found by noting that a t  this point, the velocity ofsound is equal to  
the azimuthal velocity. 

A D 0 D’ A’ 

C 
FIGURE 1. Section across shock layer. 

The boundary condition at 0 as we shall see is that both the azimuthal velocity 
and shock slope vanish there (the former from symmetry and the latter from the 
fact that  the shock is parallel to the wing surface there). 

Having found our flow fields a t  the sonic point and with the boundary con- 
dition a t  the root chord in mind, the resulting boundary-value problem is solved 
numerically using the fourth-order Runge-Kutta-Merson method. 

P 

FIGURE 2.  Diagram to show co-ordinate systems. 

2. Formulation of governing equations 
Consider a flat delta wing lying in the XX plane (figure 2).  The origin of the 

Cartesian co-ordinate system is a t  the vertex of the wing, the Z axis is pointing 
downstream along the wing axis and the axis is vertically downwards. The 
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upstream velocity vector U, lies in the X = 0 plane and is inclined at  angle a to 
the 3 = 0 plane. It is convenient to introduce a spherical polar co-ordinate 
system (?,a, $). Let the velocity components in this system be qr, qo, i& and let 
the pressure, density, temperature, enthalpy, and time be jj, p, !?, %, t,respectively. 
We now introduce the dimensionless dependent variables p = PIPref, p = PIP,,,, 
U = ijr/R-2TI,,, V = qo/RiTI,,, W = i&/R4TIe,, where R is gas constant and the ref 
quantities are defined later. It is advantageous to replace (8,$) by (0, $) where 
0 = 17~ 2 + 8 ;  $ = $71 - 5. In order to make the velocity components positive we 
introduce ii = u, V = v, W = - w. 

For the steady conical flow slat and alar vanish and the equations of motion 

- 

are 

I 
( 2 . 1 ~ - e )  ae 

av av 
pv cos -- + pw - + puv cos 0 + pw2sin 8 = - cos 0 - , ae a# 

Following Dorodnitcyn (1959) we put these equations in divergence form. 
Equation 2.1 ( a )  is already in that form. 

The equations could then be generalized as 

( 2 . 2 )  
a aQi 

ae a+ 
-((P,cos6)+-+LLicosO+GisinB = 0 (i = 1,2,  ..., 5 ) ,  

where 
Pl = P", Qi = PW, L, = 2pu, GI = 0; 

P2 = PUV, Q 2  = PUW, L2 = p(2u2-v2-w2) ,  G,  = 0; 

P, = p +pv2, Q3 = PVW, L, = ~ P U V ,  Q, = p +pw2;  

P4 = ~ V W ,  Q4 = p+pw2, L, = ~ P U W ,  G, = -PVW; 

F, = puH,  Q5 = pwH, L, = 2pH, G, = 0; 

and H = h++(u2+v2+w*). 

We shall leave the energy equation (i = 5)  in differential form and replace 
it later by H = constant, which is the integral of this equation for inviscid 
adiabatic gas. Since the enthalpy 'h'  can be considered as a function of the 
pressure and density, equations (2.2) comprise of a system of five equations for 
the five unknowns u, v, w, p and p. 

Boundary conditions 

The flow field of interest is bounded by the wing surface on one side and by the 
shock surface on the other side. The boundary conditions are therefore specified 
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along these two surfaces. The boundary condition on the body is simply the 
tangency condition, i.e. 

v = 0 for 8 = 0 (for flat delta wing). (2.3) 

The boundary conditions on the shock surface express the conservation of mass, 
momentum and energy across the shock wave discontinuity. Their formulation 
necessitates the introduction of two new quantities e and a. e is defined as the 
angle between the wing and the shock in the plane 6 = constant, so that the 
shock surface is given by 8, = E .  Clearly E is a function of q5. a is measured in 
planes which are perpendicular to both the wing surface and the planes q5 = con- 
stant. It is the angle between the line tangent to the trace of the shock and the 
trace of the wing in that plane. From geometrical considerations 

deldq5 = -tan a cos E .  (2.4) 

Let i, j,  k be the unit vectors in the (X,y, 2 )  directions. The upstream vector 

q = -  is then given as 
m U, sin aj + U, cos a k. (2.5) 

In order to write down the shock relations, we must determine the velocity 
components tangential and normal to the shock. This i,s accomplished in two 
stages. First, the unit vectors along (r,O,q5) directions (1, hi, fi) are expressed 

in terms Of (i’j’ k). P = cos Bsin $i + sindj + cos 8 cos q5k, 

Ih = sin 8 sin q5i + cos 8j - sin 8 cos $k, 

fi = cos8i-sinq5k. 
(2 .6 )  1 

Next introduce the co-ordinate system (r‘, 8‘, 9’) where (r’, 4’) directions lie in the 
surface of the shock, while the 8‘ direction is normal to it. The respective unit 
vectors in these new directions are given by 

(2.7) 

(2.8) 

I h A  1 = 1, 

n = - sin a& + cos aii. 
m = cos m% + sin oii, 

The components of the velocity q, upstream of the shock 

qm = qm r’l + p, 8’m + pm $’n 
are found at  the shock 0 = e by scalar multiplication of the vector and the three 
unit vectors 1, m, n; 

par‘ = U , [ ~ o s a ~ 0 ~ e ~ 0 ~ q 5 - s i n a s i n ~ ] ,  

p, 8’ = - Um[cos a (cos q5 sin B cos a + sin q5 sin a) + sin a cos c cos el, 
y, q5‘ = Um[cos a (cos q5 sin a sine - sin q5 cos a) + sina sin a cose]. (2.9) 

Two of these three velocity components lie in the plane tangential to the shock 
surface, i.e. (qmr’) and (am#’) while (pm8’) is normal to the shock surface. Con- 
sequently 

(2.10) 

(qT), (qav) are respectively velocities tangential and normal to the shock surface. 
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The Rankine-Hugoniot relations at the shock can be written as 

) (2.11) 

The subscripts s and m denote respectively quantities downstream and upstream 
of the shock. Having found (aT), and (qN)s we must resolve them along ( r ,  0 ,p )  
directions in order to find us, v,, w,, i.e. 

A 

(2.12) 1 u s  = C(qT)s+ (9N)Sl .  1, 
vs = ( ~ m / ~ s )  (a;), ~ 0 s ~ -  (a;)m sing, 

ws = ( ~ c o / ~ s )  Cd)co sing- (ai)rn C O S ~ .  

For a perfect gas h = (y/(y - l ) ) p / p ,  where y is the ratio of specific heats, and 
hence it is possible to get the shock relations in closed form. In this case the 
pressure and density ratios across the shock are functions of two parameters only, 
y and the Mach number normal to the shock MN given by 

MN = I%Vlm/am, (2.13) 

where 

From (2.9) and (2.10) we can substitute for 

a: = ypm/prn, the upstream sound speed. 

in (2.13) to obtain 

MN = M,{cos a(cos 4 cos a sin 8 +sin 4 sin a) + sin a cos u cos E } ,  (2.14) 

where M, is the upstream Mach number; in terms of which 

(2.15) US - = cos a cos 4 cos e - sin a sin E ,  
urn 

+ cos a {cos a(sin u cos 4 sin E - sin 4 cos a) + sin a sin u cos E } ,  

+ cos cr {cos a(sin cr cos q4 sin E - sin 4 cos a) -t- sin a sin CT cos E } .  

This completes the formulation of the boundary conditions at the shock surface. 
Now we have six differential equations and six boundary conditions, but the 

total number of dependent variables is seven, u, v, w, p ,  4, E and u. Since the 
unknown angle u is introduced through the boundary conditions, the situation 
is rendered determinate by specifying an additional boundary condition ~ ( 0 )  = 0 
which expresses the fact that in the plane of symmetry (4 = 0) of the wing the 
shock is parallel to the wing surface. 
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3. Reduction to ordinary differential equations 
Before applying the one-strip approximation in Dorodnitcyn’s method of 

integral relations, we shall give a brief account of the general formulation of 
this method. 

The equations of motion are already in divergence form. The shock layer is 
divided into N strips, so that the edge of the j th  strip is given by 

e j=c ie (q5) ;  c = ( ~ - j + i ) / ~  ( j =  1 , 2  ,..., N ) .  

On the shock 8 = e(q5) hence j = 1 describes the shock. On the body q5 = 0 so 

that we will define co = 0 and use the superscript 0 to define quantities on the 
body surface. Similarly, quantities along the j th  curve will be denoted by the 
superscript ‘ j  ’. 

We integrate from 8 = 0 to 8 = 8, to obtain 

( i  = 1,2,  . . . , 5 ;  J’ = 1,2, . . ., N ) .  (3.1) 

The system of equations (3.1) comprises 5N equations which together with the 
boundary condition, differential equation (2.4), constitute a system of 5 N +  1 
equations. The number of unknowns [u, v, w,p ,  $J on the edges of N - 1 strips, that 
is 5 ( N -  I), e, 

In  order to reduce the system to ordinary differential equations, the Qi, Li cos 8, 
Gi sin 8 functions are represented by polynomials in < where < = O / E ( $ )  is the 
normalized variable. Consequently 

and uo, wo, PO, pol is 5N + 1 so the problem is determinate. 

N 

Q = m=O 2 41,(q5)Crn,\ 

N 

m=O 

N 

m=O 

Leos8 = c brn(q5)<rn, 

GsinB = c crn(q5)crn, 

(3.2) 

where the am’s, b,’s, em's are functions of u, v, w, p ,  p at the edges of the mth 
strip, i.e. 

When (3.2) are put in (3.1) we obtain a system of ordinary differential equations 
for u, v, w, etc., on the edge of each strip. The solution is then obtained by means 
of numerical integration along each strip from q5 = 0 to any plane q5 = constant. 

Case N = 1 

(3.3) a,(#) = 05,(Um,v,,Wrn,r)m,prn,m,€). 

If we let X stand for either Qi, L, cos 8, Gi sin 8 then for the case of N = 1 

x, = xq-p(X;-xq), (3.4) 

where m = 1 if Xi contains v and m = 2 if X, does not contain v2. This assures 
us that not only the variables but also their first derivatives are matched at the 
wing surface, aince it can be shown that apja0, ap/a8, auja8, awja8 all vanish at  
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the wing surface 0 = 0. This implies that there is an infinitesimal layer across 
the wing surface across which entropy is constant. 

The unknowns in the case of N = 1 are uo, wo, P O ,  po, cr and 6. It should be 
noted that vo = 0 is known from the boundary condition of the body. 

Equation (3 .1)  for the case N = 1 reduces to 

(i = 1,2 ,3 ,4 ,5) ,  (3.5) 

where 8 has been replaced by [from the relation 8 = ec. The last of equation ( 3 . 5 )  
is replaced by an algebraic equation 

This implies that the total enthalpy of the flow is constant throughout. 

These together with the geometric equation (2.4) are solved to give 
When equations (3.4) are put in (3.5) we obtainequations (A 1) in the appendix. 

(3 .7)  

Expressions for R,9 are written out in the appendix. We have chosen as our 
reference quantities p,, p,, T, so that U, is replaced by yBm, where m, is the 
upstream Mach number and H is then given by 

H = y(y-l)+&ym2, (m,=M,). 

4. Boundary-value problem 
Let $e be the leading edge angle of the wing. At 

q5 = $be, & = v l  = 0. 
From (2.15) we obtain 

tan3cr(y+ 1)m; cosasinq5,sina 

+tanZcr{(y- 1)m2, sin2q5,cosZa+ ( y+  1)m2,(sin2a-sin2$,cos2a)+ 2> 

+ tancr{2(y - 1)  m2, sina cos a sin q50 - (y  + 1) m2, sin a cos 01 sin 

+{2+(y-1)m2,sin2a) = 0. (4.2) 

This is a cubic equation for tan u. For a particular set of Mach number, angle of 
attack, sweepback angle and y, the cubic is solved iteratively on the computer 
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to  obtain the shock angle IT at the leading edge. This iterative solution gives us 
the weak shock which is the physically applicable of the three solutions. When 
CT is known at the leading edge, the other flow variables could be found. 

The flow near the leading edge generated by the plane oblique shock is uniform. 
This flow terminates on the singular Mach cone. 

We shall now look closely at the singularities of our system. From (3.7), we 
see that there are singularities at  wo = 0 and wo2 = g = ypo/po. The first occurs 
at + = 0 (root chord). 

This is a fixed singularity which leads to the establishment of a regularity 
condition there. At this point (r = 0 and from symmetry considerations 
dpO/d$ = 0 which also leads to duO/d$ = 0. 

The second singularity occurs at  the sonic point q5 = q5,. This is a regular 
movable singularity inboard of the wing which depends on our parameters. Near 
the sonic point, the velocity component increases from subsonic to supersonic 
in the positive q5 direction. Thus dwO/d$ must be positive for positive wo (out- 
going cross flow) and negative for negative wo (incoming cross flow). This 
singularity could be seen to be of the saddle point type. 

The third of (3.7) could be written as 

dwO/dgl = - UO + ~ F / [ ~ € P ~ ( W ~ ~  - g)], (4.3) 

where P is a function of $, E ,  (r, po, uo, vo, wo. At the sonic point, the denominator 
of the second term vanished. For the velocity gradient to be finite the numerator 
is made equal to zero, Hence we obtain 

lim (dwo/d$) = EO+A 
$ = $ a  

where A is a finite parameter and Eo is the value of uo at 4,. With this, we also 
obtain 

(all quantities evaluated at  the sonic singular point). 
The numerical integration of our equations (ordinary differential) in the non- 

uniform domain is started from the sonic point. Varying A (starting from zero 
say), series of wo are generated from the sonic point and only one of them passes 
through the origin (i.e satisfies the boundary condition wo = 0 at q5 = 0). 

The standard boundary-value technique is used to find this value of A. We 
try A, to obtain wl, at  q5 = 0, then A, to obtain w2 and we then try As where 
A3 = (Aw, - A, wl)/(ws- wl) to yield w3. The calculations are repeated with A2 
and A3 and the whole process is repeated until wo = 0 at  q5 = 0. 

We use a special fourth-order Runge-Kutta-Merson procedure for the integra- 
tion. The procedure requires that we know both the flow fields as well as their 
derivatives at the starting point if there is a singularity there. Otherwise, we 
feed in only the flow variables. The step length is variable and integration is 
performed inwards. 

Our computations were carried out for wings whose flow Babaev had already 
calculated so that we can compare the two results. The results are plotted in 
figures 3-6. 
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For M, very large (1000 say) some of the flow field gradients were found to 
be very large (because of the large values of the fields themselves). We changed our 
dimensionalization scheme by replacing prer, Uref, prer, by p,, U,, P,U% re- 
spectively. 

3.01 

d 
0.05 

0 

0.6 0.4 

(6) 

tan q5 

FIGTJRE 3. Pressure distributions. - - -, Babaev. (a) Ma = 6 ,  a = 9', 
31 = 50'. (6) M ,  = 4, CI lo", = 60". 

The results show that uo increases very slightly towards the centreline, which 
confirms the basis for hypersonic small disturbance theory (u = uo + 7 2 t c i  + . . . , 
where T is slenderness parameter). 
wo and c decrease steadily and attain zero at q5 = 0 while e increases and 

attains its maximum at 9 = 0. Both pressure and density decrease as the root 
chord is approached. 
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(b) 
tan 4 

FIGURE 4. Pressure distributions. - - -, Bebaev. (a) M ,  = 1000, 01 = 30°, 
x = 45". (b )  M ,  = 1000, cc = 100, x = 45". 

5. Conclusion 
We have established that the method of integral relations applied to the 

problem of calculating the inviscid hypersonic flow past the lower surface of a 
delta wing yields results which agree very closely with those obtained by Babaev 
using the finite difference scheme and the method of successive iterations to the 
flow fields. 

Our results contradict the assertion by Brook (1965) that the method with 
one strip approximation leads, for the mixed problem to an undetermined 
solution. 

Our work supports Babaev's results that the transition between conically 
supersonic and subsonic flow takes place without the shock wave which Brook 
(1965) and Bulakh (1961) have suggested was necessary. 
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The 'convergence' of our solution has not been proved. We rely only on the 
good agreement with Babaev's calculations. It would have been better to carry 
out the calculations for N = 2 and compare the solutions but the complexity 
of our equations makes this very difficult. Finally, we remark that the method 
which has been developed in this investigation provides a suitable means for 
calculating approximately a class of flows of considerable aerodynamic im- 
portance. 

@) 

tan q5 

FIGURE 5. Shock shapes. ---, Babaev. (a)  iM, = 6, a = go, x = 50". 
( b )  M ,  = 4, a = loo, x = 60". 

Appendix 
The equations referred to in $ 3  are 
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------- 
/ 

I 
1.0- 0.8 0.6 0.4 0.2 

(b) 
tan 4 

0.2 

w 

0.1 * 

0 

FIGURE 6. Shock shapes. ---, Babaev. (a )  M ,  = 1000, a = lo", 
x = 4 5 O ,  (a) M ,  = 1000, a = 30°, x = 45'. 
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K ,  = bw‘zm, -p’v’-p‘(bfU,sinaM,+ U,cosa(&,,/MG)), 

K 2  = u’K,, 

K ,  = $dK,  + #p’w‘(w‘ - bfM, U, cos a + U,(MN/M,) sin a), 

K ,  = - 2p’w’(U, bfM, sin av’ + U,(MN/M,) cos a)  + bM,(ad + zwY2). 

a = -  2 + ( y - 1 ) M %  
(Y-  1)MmMN ’ 

b = cosa(cos 9 sin wsine - sin 9 cos a) + sin a sin a cos e ;  

c = cos a cos q5 cos e - sin a sin e, 

aa = - cos a(cos 9 cos a + sin (T sin q5 sin e), 

ac = cos a( sin 9 sin e cos a - sin CT cos 9) , 
4YMN ( y  - 1)MR- 2 
y + l  ’ = (y+l)M,M%’ 

ad = ____ 

4 
z =  

( y +  l ) M N M W *  

R, = Qe(aczw’M, -p‘U,(acfM, sin a + aa cos a)) - $epouo 

+ $tan a cos e(pOwo -p’w’) -p’ cos e(v’ + +u’) 

+eQcsinacose(w‘zM,-p’U,sina ( fMw-  l ) ) ,  

R, = &e{aczu’w’M, +p’w’U, cos a sin q5 cos e -p’u‘U,(aa cos a + acfMw sin a)> 

- Qep‘w‘ab tan CT cos e - Q tan a cos ~(p‘u‘w’ - pouowo) + +pO(wO2 - 2 ~ 0 2 )  

+QecsinaC,eu’(w‘zM,-p‘U,sin(~(fM,- l))-p’u’v’cose 

- &ep’ cos €( 2U’Z - v‘2 - w‘,), 

R, = cose(p’ +p’v‘,) -pa+ &esine(p‘+pw’2) 

+ +cp‘u’v‘ cos E + tan CT cosep‘dw’ + 4s tan a cos e 

x { - v‘w‘zc cos a M ,  +p‘v‘U, c sin a cos a(fM, - 1 )  

+p’w’cU,(sin2a+ fM,cos2~)}+~e{p’v’U, (aacosa+acs inaf~ , )  

- aczv‘w‘M, +p‘w’U,( - aa sin a + acfM, cos a)}, 

R, = 2pouowo - p‘v’w‘ - e cos ep‘u‘w‘ + 4s sin ep’v’w’ 

+ QaceHG(ad+ zwf2) - $ep‘w‘U,(aa cos a + acfM, sin a) 

+ ~cesincrco~e{lM,(ad+zw’~)-2p’w’U,sina(fM,- I)} 

+~tan~~cose{(pO+pO~~~)- (p’+q5’~’2)} ,  

K = 7w0R, - 1 2 ~ ~ ~ R ,  + 2uo(R6 - uOR,). 

The simultaneous equations (A 1 )  are solved to obtain the gradients written out 
in system (3.7). 
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